
The vibrating rectangle and the vibrating circular drum are
the two best known examples where the Helmholtz equa-
tion can be solved by the method of separation of variables.
Here, we will consider the case of a vibrating ellipse-shaped
drum. This problem is slightly more complicated because,
after separation of variables, the resulting ordinary differen-
tial equations are Mathieu equations. 

Let us consider a membrane inside an ellipse-shaped
region with the membrane held fixed at the boundary. The
displacement u(r, t) of the membrane is governed by the
wave equation

Assuming harmonic time dependence u(r, t) = y(r) cos(w t),
the wave equation can be separated. In this article, we will
solve the r-dependent eigenvalue problem.

Let l = w/c and let a and b be the half-axes of the ellipse.
Let W denote the interior region,

and let ∂W denote the boundary. Then the equations under
consideration are

–Dyn(r) = ln
2 yn(r) for r Œ W, yn(r) = 0 for r Œ ∂W

Separation of Variables

The Laplace operator separates in an elliptical coordinate
system. An elliptical coordinate system (r, j) is related to a
Cartesian coordinate system by the equations

x = ccoshr cosj,   y = csinhr sinj,   0 £ j £ 2p,   0 < r < •

For a given ellipse, the half axes a and b are related to c and
the maximal value r0 of r by
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The curves r = constant are ellipses with foci at ±c and
the curves j = constant are hyperbolas. Here is a net of coor-
dinate lines for c = 1.

In[1]:= With[{c = 1}, 

Show[Graphics[{

{RGBColor[1, 0, 0], Table[Line[

Table[{c Cosh[r] Cos[W], c Sinh[r] Sin[W]}, 

{W, 0, 2 O, O/100.}]], {r, 0, 1, 1/15}]}, 

{RGBColor[0, 0, 1], Table[Line[

Table[{c Cosh[r] Cos[W], c Sinh[r] Sin[W]}, 

{r, 0, 1, 0.01}]], {W, 0, 2 O, O/19.}]}}], 

AspectRatio é Automatic, 

PlotRange é All, Frame é True]]; 

Calculation of Eigenvalues and Eigenfunctions

The “azimuthal” (j dependent) equation derived above has
arbitrary linear combinations of Mathieu functions as 
solutions. For physical reasons, we want the solutions to be
periodic in j. This implies a relation between a and q. The
Mathematica commands MathieuCharacteristicA[p, q] and
MathieuCharacteristicB[p, q] give values of a such that the 
corresponding Mathieu functions MathieuC and MathieuS are
quasiperiodic with period p/p (this means they have the
form eipzg(z) with g(z) a 2p-periodic function). We define
the quasiperiodic Mathieu functions cen(q, z) (for n ≥ 0) and
sen(q, z) (for n > 0) by
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The Laplace equation for an ellipse is solved by the method of separation of variables. The
resulting one-dimensional differential equations are solved with Mathieu functions. The eigen-
values are calculated numerically and the various kinds of eigenmodes are visualized with 3D and
contour plots. Some degenerate eigenmodes are explicitly calculated.
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n[11]:= cen_Integer?NonNegative[q_, z_] = 

MathieuC[MathieuCharacteristicA[n, q], q, z]; 

sen_Integer?Positive[q_, z_] = 

MathieuS[MathieuCharacteristicB[n, q], q, z]; 

The solutions of the “radial” (r dependent) equation are
also Mathieu functions, but with purely imaginary argument. 

For r = 0, we must have continuity along the line connect-
ing the two foci. Using the fact that cen is an even function
that is nonzero at z = 0 and sen is an odd function, we obtain
the following forms for the eigenfunctions yn(r, j):

yn
c

j(r, j) µ ce(qn
c

j, j) ce(qn
c

j, ir), n = 0, 1, 2, … , j = 1, 2, …

yn
s

j(r, j) µ se(qn
s

j, j) se(qn
s

j, ir), n, j = 1, 2, …

The corresponding eigenvalues are given by 

The Dirichlet boundary condition at r = r0 remains to be
fulfilled. For definiteness, we will take r0 = 2/3.

n[13]:= r0 = 2/3; 

The boundary conditions gives a countable number of qn j
for a given r0 and fixed n. We will find such values numeri-
cally. 

Looking at a typical example, we see that certain values of
q satisfy the boundary condition for n = 2:

n[14]:= Plot[ce2[q, I r0], {q, 0, 25}]; 

We can use this plot to approximate the zeros by selecting
the intervals where the function value changes sign.

Lyapunov Exponents

Lyapunov exponents provide a quantitative measure of the
divergence or convergence of nearby trajectories for a
dynamical system. If we consider a small hypersphere of ini-
tial conditions in the phase space, for sufficiently short time
scales, the effect of the dynamics will be to distort this set
into a hyperellipsoid, stretched along some directions and
contracted along others. The asymptotic rate of expansion of
the largest axis is measured by the largest LCE l1. In general,
if we sort the axes and LCEs in decreasing order by magni-
tude (e1 ≥ L ≥ en and l1 ≥ L ≥ ln), each li quantifies the
average exponential rate of expansion or contraction for the
i-th axis ei.
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An n-dimensional continuous-time (autonomous) smooth
dynamical system is defined by the differential equation

x
. = F(x), (1)

More formally, consider two nearby points x0, x0 + u0 in
the phase space M, where u0 is a small perturbation of the
initial point x0 (see Figure 1). After a time t, their images
under the flow will be ft(x0) and ft(x0 + u0) and the pertur-
bation ut will become

ut ∫ ft(x0 + u0) - ft(x0) = Dx0
ft(x0) . u0, (2)

where the last term is obtained by linearizing ft. Therefore
the average exponential rate of divergence or convergence
of the two trajectories where ΩΩuΩΩ denotes the length of a
vector u. If l(x, u) > 0, then one has exponential divergence
of nearby orbits. It can be shown that, under very weak
smoothness conditions on the dynamical system, the limit
exists and is finite for almost all points x0 Œ M, and, for
almost all tangent vectors u0, it is equal to the largest LCE l1
[Oseledec 1968]. 

Following the algorithm of [Benettin et al. 1980], we start
by choosing an initial condition x0 and an n ¥ n matrix U0 =
[u1

0, … , un
0]. Using the Gram-Schmidt procedure, we calcu-

late the corresponding matrix of orthonormal vectors V0 =
[v1

0, …, vn
0] and integrate the variational equation (7) from

{x0, V0} for a short interval T, to obtain x1 = fT(x0) and 

U1 ∫ [u1
1, …, un

1] = Dx0
fT(U0) = FT(x0) . [u1

0, …, un
0].

Again, we calculate the orthonormalized version of U1 and
integrate the equation from {x1, V1} for T seconds to obtain
x2 and U2. We repeat this integration-orthonormalization
procedure K times.

Let us describe two necessary subalgorithms. First, we
need an algorithm to perform arithmetic operations on 
isolating rectangles. It is well known how to perform arith-
metic on real intervals. Now suppose that we have two rect-
angles in the complex plane, R = A + B . i and S =
C + D . i, where A, B, C, and D are real intervals. To add,
subtract, multiply, or divide R and S, or raise R to a natural
power n, we use the following facts (for the division RˇS, we
assume that the closure of S does not contain zero): 

R ± S = (A ± C) + (B ± D) i

R . S Õ (AC - BD) + (AD + BC) i
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polynomial divisible by its 
algebraic number minimal polynomial

a + b Resultanty (f(x - y), g(y))
a - b Resultanty (f(x + y), g(y))

a . b Resultanty (ydeg(f) f(xˇy), g(y))

aˇb Resultanty (f(x y), g(y))

apˇq Resultanty (f(y), xq - yp)

TABLE 1.



RˇS Õ (AC + BD)ˇ(C2 + D2) + (BC - AD)ˇ(C2 + D2) i

Rn Õ Âk=0
[nˇ2] ( n

2k) (-1)k An-2kB2k

+ i Âk=0
[(n-1)ˇ2] ( n

2k+1) (-1)k An-2k-1B2k + 1

In addition, we need an algorithm for making an isolating
rectangle of an algebraic number a smaller. A rectangle bisec-
tion method was suggested in [Collins and Krandick 1992].
We also use the following hybrid method: 

1. Try to compute a numeric approximation of a by supply-
ing the middle point of the isolating rectangle R as a 
starting point of the second stage of the Jenkins-Traub
algorithm. 

2. If the numeric algorithm does not converge, go to step 4. 

3. Use Lemma 1 to find a rectangle R1 containing at least
one root of the minimal polynomial of a. If R1 Ã R, put 
R := R1 and go to step 5; else, go to step 4. 

4. Bisect R several times. 

5. If the new R is sufficiently small, return R; else, go to
step 1 with increased precision of computations. 

The computing time of the rectangle bisection method
grows much faster with the required precision than the com-
puting time of the hybrid method. However, the rectangle
bisection method is more effective when we need to make
large rectangles only a few bisections smaller. 

Visualization of the Eigenfunctions

Having calculated some explicit numerical values for the
eigenvalues (that is, for q), let us take a look at the form of
the corresponding displacements. We define a function Eigen-
functionsPlot3D which makes a 3D picture of the eigenfunc-
tions. The graphics object boundary represents the fixed
boundary of the membrane.

In[22]:= boundary = 

{Thickness[0.01], 

Line[Table[{Cosh[r0] Cos[W], Sinh[r0] Sin[W], 0}, 

{W, 0, 2O, 2O/200.}]]}; 

Here are some examples.

In[26]:= EigenfunctionsPlot3D[Yc[0, 1, r, W], {r, W}]

In[28]:= EigenfunctionsPlot3D[Yc[1, 1, r, W], {r, W}]

Using more PlotPoints, we can also visualize higher-lying
states. The following picture shows the state yc

24 1 calculated
above. It has the remarkable property that the displacement
is mainly concentrated at the boundary and the middle is
quite flat. This is a “whispering gallery” state, so called by
Lord Rayleigh, who observed that in certain rooms sound
waves can travel along the walls.

In[31]:= EigenfunctionsPlot3D[Ys[24, 1, r, W], {r, W}, 

PlotPoints é 125]

Figure 1 shows an animation of the time-dependent vibra-
tions for the mode yc

32.
Here are three examples of contour plots of the eigenfunc-

tions calculated above.

In[36]:= EllipseContourPlot[Yc[2, 2, r, W], {r, W}, 

ColorFunction é Hue, PlotPoints é 50]; 
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n[38]:= EllipseContourPlot[Ys[5, 2, r, W], {r, W}, 

ColorFunction é (Hue[Random[]]&), PlotPoints é 50]; 

Degeneracies

In comparison to a circular membrane, the ellipse-shaped
membrane has an extra degree of freedom, the eccentricity of
the ellipse. By varying the eccentricity, one can obtain the
situation where two states have the same eigenvalue, which
means the same q.

Here are the first few states calculated for 10 different val-
ues of r0. The starting values for the numerical root findings
are recursively reused.

This plot shows the dependence of the states on r0.

n[40]:= Show[Graphics[{

Table[MapIndexed[{

Hue[(#2m1t - 1)/3], Line[#1]}&, 

PListc[i]], {i, 0, 5}], 

Circle[{0.723, 31.9}, {0.005, 0.85}]}], 

PlotRange é All, Frame é True, 

FrameLabel é {“r”, “q”}]; 
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The circle indicates one point of degeneracy of lc
13 and 

lc
52. Let us calculate this point more accurately.

In[41]:= r* = r /. FindRoot[

(q /. FindRoot[ce1[q, I r] Y 0, {q, 31, 33}]) Y

(q /. FindRoot[ce5[q, I r] Y 0, {q, 31, 33}]), 

{r, 0.7, 0.8}]

Out[41]= 0.72257

The corresponding value of q is:

In[42]:= q* = q /. FindRoot[Evaluate[ce1[q, I r*] == 0], {q, 31, 33}]

Out[42]= 31.9028

Because the eigenvalues lc
13 and lc

52 are the same for 
r = r*, the general form of the eigenfunctions is a linear com-
bination of these two states, lc

13 + m lc
52. The large factor

300 in the following formula accounts for the fact that the
two eigenfunctions are not normalized.

In[43]:= Y*[K_, r_, W_] := 

300 K ce1[q*, W] ce1[q*, I r] + 

(1 - K) ce5[q*, W] ce5[q*, I r]; 

By varying the value of m, we get various resulting shapes
for the displacements. 
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