CHAPTER 2 Logarithmic and Exponential Functions

EXERCISE SET 2.1

1. (b)
$$A = x^2$$
 (c) $\frac{dA}{dt} = 2x\frac{dx}{dt}$
(d) Find $\frac{dA}{dt}\Big|_{x=3}$ given that $\frac{dx}{dt}\Big|_{x=3} = 2$. From part (c), $\frac{dA}{dt}\Big|_{x=3} = 2(3)(2) = 12 \text{ ft}^2/\text{min.}$
2. (b) $A = \pi r^2$ (c) $\frac{dA}{dt} = 2\pi r\frac{dr}{dt}$
(d) Find $\frac{dA}{dt}\Big|_{r=5}$ given that $\frac{dr}{dt}\Big|_{r=5} = 2$. From part (c), $\frac{dA}{dt}\Big|_{r=5} = 2\pi(5)(2) = 20\pi \text{ cm}^2/\text{s.}$
3. (a) $V = \pi r^2 h$, so $\frac{dV}{dt} = \pi \left(r^2\frac{dh}{dt} + 2rh\frac{dr}{dt}\right)$.
(b) Find $\frac{dV}{dt}\Big|_{s=6}$ given that $\frac{dh}{dt}\Big|_{s=6} = 1$ and $\frac{dr}{dt}\Big|_{s=6} = -1$. From part (a), $\frac{dV}{dt}\Big|_{s=6} = \pi[10^2(1) + 2(10)(6)(-1)] = -20\pi \text{ in}^3/\text{s};$ the volume is decreasing.
4. (a) $\ell^2 = x^2 + y^2$, so $\frac{d\ell}{dt} = \frac{1}{\ell} \left(x\frac{dx}{dt} + y\frac{dy}{dt}\right)$.
(b) Find $\frac{d\ell}{dt}\Big|_{s=6} = \pi[10^2(1) + 2(10)(6)(-1)] = -20\pi \text{ in}^3/\text{s};$ the volume is decreasing.
4. (a) $\ell^2 = x^2 + y^2$, so $\frac{d\ell}{dt} = \frac{1}{\ell} \left(x\frac{dx}{dt} + y\frac{dy}{dt}\right)$.
(b) Find $\frac{d\ell}{dt}\Big|_{s=4} = \frac{\pi}{10} \frac{1}{\ell} \left(x\frac{dx}{dt} + y\frac{dy}{dt}\right)$.
(c) Find $\frac{d\ell}{dt}\Big|_{s=4} = \frac{\pi}{10} \frac{1}{\ell} \left(-\frac{1}{4}\right) = \frac{1}{10}$ ft/s; the diagonal is increasing.
5. (a) $\tan \theta = \frac{y}{x}$, so $\sec^2 \theta \frac{d\theta}{dt} = \frac{x\frac{dy}{dt} - y\frac{dx}{dt}}{x^2}$, $\frac{d\theta}{dt} = \frac{\cos^2 \theta}{x^2} \left(x\frac{dy}{dt} - y\frac{dx}{dt}\right)$
(b) Find $\frac{d\theta}{dt}\Big|_{s=4} \frac{1}{s}$ given that $\frac{dx}{dt}\Big|_{s=5} = 1$ and $\frac{dy}{dt}\Big|_{s=5} = -\frac{1}{4}$.
When $x = 2$ and $y = 2$, $\tan \theta = 2/2 = 1$ so $\theta = \frac{\pi}{4}$ and $\cos \theta = \cos \frac{\pi}{4} = \frac{1}{\sqrt{2}}$. Thus from part (a), $\frac{d\theta}{dt}\Big|_{s=5} = -2$ and $\frac{dy}{dt}\Big|_{s=5} = 3$.
(c) Find $\frac{dz}{dt}\Big|_{s=5} \frac{dx}{dt} \frac{dx}{dt}\Big|_{s=5} = -2$ and $\frac{dy}{dt}\Big|_{s=5} = 3$.
(d) $\frac{dz}{dt}\Big|_{s=5} \frac{dx}{dt} + 3x^2y^2\frac{dx}{dt}, \frac{dz}{dt}\Big|_{s=5} = -2$ and $\frac{dy}{dt}\Big|_{s=5} = -1$.

7. Let A be the area swept out, and θ the angle through which the minute hand has rotated. Find $\frac{dA}{dt}$ given that $\frac{d\theta}{dt} = \frac{\pi}{30}$ rad/min; $A = \frac{1}{2}r^2\theta = 8\theta$, so $\frac{dA}{dt} = 8\frac{d\theta}{dt} = \frac{4\pi}{15}$ in²/min.

Exercise Set 2.1

8. Let r be the radius and A the area enclosed by the ripple. We want $\frac{dA}{dt}\Big|_{t=10}$ given that $\frac{dr}{dt} = 3$. We know that $A = \pi r^2$, so $\frac{dA}{dt} = 2\pi r \frac{dr}{dt}$. Because r is increasing at the constant rate of 3 ft/s, it follows that r = 30 ft after 10 seconds so $\frac{dA}{dt}\Big|_{t=10} = 2\pi (30)(3) = 180\pi$ ft²/s.

9. Find
$$\frac{dr}{dt}\Big|_{A=9}$$
 given that $\frac{dA}{dt} = 6$. From $A = \pi r^2$ we get $\frac{dA}{dt} = 2\pi r \frac{dr}{dt}$ so $\frac{dr}{dt} = \frac{1}{2\pi r} \frac{dA}{dt}$. If $A = 9$ then $\pi r^2 = 9$, $r = 3/\sqrt{\pi}$ so $\frac{dr}{dt}\Big|_{A=9} = \frac{1}{2\pi(3/\sqrt{\pi})}(6) = 1/\sqrt{\pi}$ mi/h.

- 10. The volume V of a sphere of radius r is given by $V = \frac{4}{3}\pi r^3$ or, because $r = \frac{D}{2}$ where D is the diameter, $V = \frac{4}{3}\pi \left(\frac{D}{2}\right)^3 = \frac{1}{6}\pi D^3$. We want $\frac{dD}{dt}\Big|_{r=1}$ given that $\frac{dV}{dt} = 3$. From $V = \frac{1}{6}\pi D^3$ we get $\frac{dV}{dt} = \frac{1}{2}\pi D^2 \frac{dD}{dt}$, $\frac{dD}{dt} = \frac{2}{\pi D^2} \frac{dV}{dt}$, so $\frac{dD}{dt}\Big|_{r=1} = \frac{2}{\pi (2)^2}(3) = \frac{3}{2\pi}$ ft/min.
- 11. Find $\frac{dV}{dt}\Big|_{r=9}$ given that $\frac{dr}{dt} = -15$. From $V = \frac{4}{3}\pi r^3$ we get $\frac{dV}{dt} = 4\pi r^2 \frac{dr}{dt}$ so $\frac{dV}{dt}\Big|_{r=9} = 4\pi (9)^2 (-15) = -4860\pi$. Air must be removed at the rate of 4860π cm³/min.
- 12. Let x and y be the distances shown in the diagram. We want to find $\frac{dy}{dt}\Big|_{y=8}$ given that $\frac{dx}{dt} = 5$. From $x^2 + y^2 = 17^2$ we get $2x\frac{dx}{dt} + 2y\frac{dy}{dt} = 0$, so $\frac{dy}{dt} = -\frac{x}{y}\frac{dx}{dt}$. When y = 8, $x^2 + 8^2 = 17^2$, $x^2 = 289 64 = 225$, x = 15 so $\frac{dy}{dt}\Big|_{y=8} = -\frac{15}{8}(5) = -\frac{75}{8}$ ft/s; the top of the ladder is moving down the wall at a rate of 75/8 ft/s.

13. Find
$$\frac{dx}{dt}\Big|_{y=5}$$
 given that $\frac{dy}{dt} = -2$. From $x^2 + y^2 = 13^2$ we get
 $2x\frac{dx}{dt} + 2y\frac{dy}{dt} = 0$ so $\frac{dx}{dt} = -\frac{y}{x}\frac{dy}{dt}$. Use $x^2 + y^2 = 169$ to find that
 $x = 12$ when $y = 5$ so $\frac{dx}{dt}\Big|_{y=5} = -\frac{5}{12}(-2) = \frac{5}{6}$ ft/s.

14. Let θ be the acute angle, and x the distance of the bottom of the plank from the wall. Find $\frac{d\theta}{dt}\Big|_{x=2}$ given that $\frac{dx}{dt}\Big|_{x=2} = -\frac{1}{2}$ ft/s. The variables θ and x are related by the equation $\cos \theta = \frac{x}{10}$ so $-\sin \theta \frac{d\theta}{dt} = \frac{1}{10} \frac{dx}{dt}, \frac{d\theta}{dt} = -\frac{1}{10\sin \theta} \frac{dx}{dt}$. When x = 2, the top of the plank is $\sqrt{10^2 - 2^2} = \sqrt{96}$ ft above the ground so $\sin \theta = \sqrt{96}/10$ and $\frac{d\theta}{dt}\Big|_{x=2} = -\frac{1}{\sqrt{96}} \left(-\frac{1}{2}\right) = \frac{1}{2\sqrt{96}} \approx 0.051$ rad/s.

Rocket

15. Let x denote the distance from first base and y the distance from home plate. Then $x^2 + 60^2 = y^2$ and $2x \frac{dx}{dt} = 2y \frac{dy}{dt}$. When x = 50then $y = 10\sqrt{61}$ so $\frac{dy}{dt} = \frac{x}{y} \frac{dx}{dt} = \frac{50}{10\sqrt{61}}(25) = \frac{125}{\sqrt{61}}$ ft/s.

16. Find
$$\frac{dx}{dt}\Big|_{x=4}$$
 given that $\frac{dy}{dt}\Big|_{x=4} = 2000$. From $x^2 + 5^2 = y^2$ we get
 $2x\frac{dx}{dt} = 2y\frac{dy}{dt}$ so $\frac{dx}{dt} = \frac{y}{x}\frac{dy}{dt}$. Use $x^2 + 25 = y^2$ to find that $y = \sqrt{41}$
when $x = 4$ so $\frac{dx}{dt}\Big|_{x=4} = \frac{\sqrt{41}}{4}(2000) = 500\sqrt{41}$ mi/h.

17. Find $\frac{dy}{dt}\Big|_{x=4000}$ given that $\frac{dx}{dt}\Big|_{x=4000} = 880$. From $y^2 = x^2 + 3000^2$ we get $2y\frac{dy}{dt} = 2x\frac{dx}{dt}$ so $\frac{dy}{dt} = \frac{x}{y}\frac{dx}{dt}$. If x = 4000, then y = 5000 so $\frac{dy}{dt}\Big|_{x=4000} = \frac{4000}{5000}(880) = 704$ ft/s.

18. Find
$$\frac{dx}{dt}\Big|_{\phi=\pi/4}$$
 given that $\frac{d\phi}{dt}\Big|_{\phi=\pi/4} = 0.2$. But $x = 3000 \tan \phi$ so
 $\frac{dx}{dt} = 3000(\sec^2 \phi)\frac{d\phi}{dt}, \frac{dx}{dt}\Big|_{\phi=\pi/4} = 3000\left(\sec^2 \frac{\pi}{4}\right)(0.2) = 1200$ ft/s.

- 19. (a) If x denotes the altitude, then r x = 3960, the radius of the Earth. $\theta = 0$ at perigee, so $r = 4995/1.12 \approx 4460$; the altitude is x = 4460 3960 = 500 miles. $\theta = \pi$ at apogee, so $r = 4995/0.88 \approx 5676$; the altitude is x = 5676 3960 = 1716 miles.
 - (b) If $\theta = 120^{\circ}$, then $r = 4995/0.94 \approx 5314$; the altitude is 5314 3960 = 1354 miles. The rate of change of the altitude is given by

$$\frac{dx}{dt} = \frac{dr}{dt} = \frac{dr}{d\theta}\frac{d\theta}{dt} = \frac{4995(0.12\sin\theta)}{(1+0.12\cos\theta)^2}\frac{d\theta}{dt}$$

Use $\theta = 120^{\circ}$ and $d\theta/dt = 2.7^{\circ}/\text{min} = (2.7)(\pi/180)$ rad/min to get $dr/dt \approx 27.7$ mi/min.

20. (a) Let x be the horizontal distance shown in the figure. Then $x = 4000 \cot \theta$ and

 $\frac{dx}{dt} = -4000 \csc^2 \theta \frac{d\theta}{dt}, \text{ so } \frac{d\theta}{dt} = -\frac{\sin^2 \theta}{4000} \frac{dx}{dt}. \text{ Use } \theta = 30^\circ \text{ and} \\ \frac{dx}{dt} = 300 \text{ mi/h} = 300(5280/3600) \text{ ft/s} = 440 \text{ ft/s to get} \\ \frac{d\theta}{dt} = -0.0275 \text{ rad/s} \approx -1.6^\circ/\text{s}; \theta \text{ is decreasing at the rate of } 1.6^\circ/\text{s}.$

(b) Let y be the distance between the observation point and the aircraft. Then $y = 4000 \csc \theta$ so $dy/dt = -4000(\csc \theta \cot \theta)(d\theta/dt)$. Use $\theta = 30^{\circ}$ and $d\theta/dt = -0.0275$ rad/s to get $dy/dt \approx 381$ ft/s.

Exercise Set 2.1

21. Find $\frac{dh}{dt}\Big|_{h=16}$ given that $\frac{dV}{dt} = 20$. The volume of water in the tank at a depth h is $V = \frac{1}{3}\pi r^2 h$. Use similar triangles (see figure) to get $\frac{r}{h} = \frac{10}{24}$ so $r = \frac{5}{12}h$ thus $V = \frac{1}{3}\pi \left(\frac{5}{12}h\right)^2 h = \frac{25}{432}\pi h^3$, $\frac{dV}{dt} = \frac{25}{144}\pi h^2 \frac{dh}{dt}; \frac{dh}{dt} = \frac{144}{25\pi h^2} \frac{dV}{dt}, \frac{dh}{dt}\Big|_{h=16} = \frac{9}{20\pi}$ ft/min.

22. Find
$$\frac{dh}{dt}\Big|_{h=6}$$
 given that $\frac{dV}{dt} = 8$. $V = \frac{1}{3}\pi r^2 h$, but $r = \frac{1}{2}h$ so
 $V = \frac{1}{3}\pi \left(\frac{h}{2}\right)^2 h = \frac{1}{12}\pi h^3$, $\frac{dV}{dt} = \frac{1}{4}\pi h^2 \frac{dh}{dt}$, $\frac{dh}{dt} = \frac{4}{\pi h^2} \frac{dV}{dt}$,
 $\frac{dh}{dt}\Big|_{h=6} = \frac{4}{\pi (6)^2} (8) = \frac{8}{9\pi}$ ft/min.

23. Find
$$\frac{dV}{dt}\Big|_{h=10}$$
 given that $\frac{dh}{dt} = 5$. $V = \frac{1}{3}\pi r^2 h$, but $r = \frac{1}{2}h$ so $V = \frac{1}{3}\pi \left(\frac{h}{2}\right)^2 h = \frac{1}{12}\pi h^3$,
 $\frac{dV}{dt} = \frac{1}{4}\pi h^2 \frac{dh}{dt}, \frac{dV}{dt}\Big|_{h=10} = \frac{1}{4}\pi (10)^2 (5) = 125\pi \text{ ft}^3/\text{min.}$

24. Let r and h be as shown in the figure. If C is the circumference of the base, then we want to find $\left.\frac{dC}{dt}\right|_{h=8}$ given that $\frac{dV}{dt} = 10$. It is given that $r = \frac{1}{2}h$, thus $C = 2\pi r = \pi h$ so

$$\frac{dC}{dt} = \pi \frac{dh}{dt} \tag{1}$$

Use
$$V = \frac{1}{3}\pi r^2 h = \frac{1}{12}\pi h^3$$
 to get $\frac{dV}{dt} = \frac{1}{4}\pi h^2 \frac{dh}{dt}$, so
 $\frac{dh}{dt} = \frac{4}{\pi h^2} \frac{dV}{dt}$ (2)

Substitution of (2) into (1) gives $\frac{dC}{dt} = \frac{4}{h^2} \frac{dV}{dt}$ so $\frac{dC}{dt}\Big|_{h=8} = \frac{4}{64}(10) = \frac{5}{8}$ ft/min.

25. With s and h as shown in the figure, we want to find $\frac{dh}{dt}$ given that $\frac{ds}{dt} = 500$. From the figure, $h = s \sin 30^\circ = \frac{1}{2}s$ so $\frac{dh}{dt} = \frac{1}{2}\frac{ds}{dt} = \frac{1}{2}(500) = 250$ mi/h.

Boa

26. Find
$$\frac{dx}{dt}\Big|_{y=125}$$
 given that $\frac{dy}{dt} = -20$. From $x^2 + 10^2 = y^2$ we get
 $2x\frac{dx}{dt} = 2y\frac{dy}{dt}$ so $\frac{dx}{dt} = \frac{y}{x}\frac{dy}{dt}$. Use $x^2 + 100 = y^2$ to find that
 $x = \sqrt{15,525} = 15\sqrt{69}$ when $y = 125$ so
 $\frac{dx}{dt}\Big|_{y=125} = \frac{125}{15\sqrt{69}}(-20) = -\frac{500}{3\sqrt{69}}$. The boat is approaching the
dock at the rate of $\frac{500}{3\sqrt{69}}$ ft/min.

Pulley

10

27. Find
$$\frac{dy}{dt}$$
 given that $\frac{dx}{dt}\Big|_{y=125} = -12$. From $x^2 + 10^2 = y^2$ we get
 $2x\frac{dx}{dt} = 2y\frac{dy}{dt}$ so $\frac{dy}{dt} = \frac{x}{y}\frac{dx}{dt}$. Use $x^2 + 100 = y^2$ to find that
 $x = \sqrt{15,525} = 15\sqrt{69}$ when $y = 125$ so
 $\frac{dy}{dt} = \frac{15\sqrt{69}}{125}(-12) = -\frac{36\sqrt{69}}{25}$. The rope must be pulled at the
rate of $\frac{36\sqrt{69}}{25}$ ft/min.

(a) Let x and y be as shown in the figure. It is required to find $\frac{dx}{dt}$, given that $\frac{dy}{dt} = -3$. By similar triangles, $\frac{x}{6} = \frac{x+y}{18}$, 18x = 6x + 6y, 12x = 6y, $x = \frac{1}{2}y$, so $\frac{dx}{dt} = \frac{1}{2}\frac{dy}{dt} = \frac{1}{2}(-3) = -\frac{3}{2}$ ft/s.

(b) The tip of the shadow is z = x + y feet from the street light, thus the rate at which it is moving is given by $\frac{dz}{dt} = \frac{dx}{dt} + \frac{dy}{dt}$. In part (a) we found that $\frac{dx}{dt} = -\frac{3}{2}$ when $\frac{dy}{dt} = -3$ so $\frac{dz}{dt} = (-3/2) + (-3) = -9/2$ ft/s; the tip of the shadow is moving at the rate of 9/2 ft/s toward the street light.

29. Find
$$\frac{dx}{dt}\Big|_{\theta=\pi/4}$$
 given that $\frac{d\theta}{dt} = \frac{2\pi}{10} = \frac{\pi}{5}$ rad/s. Then $x = 4 \tan \theta$ (see figure) so $\frac{dx}{dt} = 4 \sec^2 \theta \frac{d\theta}{dt}$, $\frac{dx}{dt}\Big|_{\theta=\pi/4} = 4 \left(\sec^2 \frac{\pi}{4}\right) \left(\frac{\pi}{5}\right) = 8\pi/5$ km/s.

28.

30. If x, y, and z are as shown in the figure, then we want $\frac{dz}{dt}\Big|_{x=2, y=4}$ given that $\frac{dx}{dt} = -600$ and $\frac{dy}{dt}\Big|_{x=2, y=4} = -1200$. But $z^2 = x^2 + y^2$ so $2z\frac{dz}{dt} = 2x\frac{dx}{dt} + 2y\frac{dy}{dt}, \frac{dz}{dt} = \frac{1}{z}\left(x\frac{dx}{dt} + y\frac{dy}{dt}\right)$. When x = 2 and $y = 4, z^2 = 2^2 + 4^2 = 20, z = \sqrt{20} = 2\sqrt{5}$ so $\frac{dz}{dt}\Big|_{x=2, y=4} = \frac{1}{2\sqrt{5}}[2(-600) + 4(-1200)] = -\frac{3000}{\sqrt{5}} = -600\sqrt{5}$ mi/h; the

distance between missile and aircraft is decreasing at the rate of $600\sqrt{5}$ mi/h.

31. We wish to find $\frac{dz}{dt}\Big|_{x=2, y=4}$ given $\frac{dx}{dt} = -600$ and $\frac{dy}{dt}\Big|_{x=2, y=4} = -1200$ (see figure). From the law of cosines, $z^2 = x^2 + y^2 - 2xy \cos 120^\circ = x^2 + y^2 - 2xy(-1/2) = x^2 + y^2 + xy$, so $2z\frac{dz}{dt} = 2x\frac{dx}{dt} + 2y\frac{dy}{dt} + x\frac{dy}{dt} + y\frac{dx}{dt}$, $\frac{dz}{dt} = \frac{1}{2z}\left[(2x+y)\frac{dx}{dt} + (2y+x)\frac{dy}{dt}\right]$. When x = 2 and y = 4, $z^2 = 2^2 + 4^2 + (2)(4) = 28$, so $z = \sqrt{28} = 2\sqrt{7}$, thus $\frac{dz}{dt}\Big|_{x=2, y=4} = \frac{1}{2(2\sqrt{7})}\left[(2(2)+4)(-600) + (2(4)+2)(-1200)\right] = -\frac{4200}{\sqrt{7}} = -600\sqrt{7}$ mi/h; the distance between missile and aircraft is

 $-600\sqrt{7}$ mi/h; the distance between missile and aircraft is decreasing at the rate of $600\sqrt{7}$ mi/h.

32. (a) Let x, y, and z be the distances shown in the first figure. Find $\frac{dz}{dt}\Big|_{x=2,\atop y=0}^{x=2}$ given that $\frac{dx}{dt} = -75$ and $\frac{dy}{dt} = -100$. In order to find an equation relating x, y, and z, first draw the line segment that joins the point P to the car, as shown in the second figure. Because triangle OPC is a right triangle, it follows that PC has length $\sqrt{x^2 + (1/2)^2}$; but triangle HPC is also a right triangle so $z^2 = \left(\sqrt{x^2 + (1/2)^2}\right)^2 + y^2 = x^2 + y^2 + 1/4$ and $2z\frac{dz}{dt} = 2x\frac{dx}{dt} + 2y\frac{dy}{dt} + 0$, $\frac{dz}{dt} = \frac{1}{z}\left(x\frac{dx}{dt} + y\frac{dy}{dt}\right)$. Now, when x = 2 and $y = 0, z^2 = (2)^2 + (0)^2 + 1/4 = 17/4, z = \sqrt{17}/2$ so $\frac{dz}{dt}\Big|_{x=2,\atop y=0} = \frac{1}{(\sqrt{17}/2)}[2(-75) + 0(-100)] = -300/\sqrt{17}$ mi/h

(b) decreasing, because $\frac{dz}{dt} < 0$.

33. (a) We want
$$\frac{dy}{dt}\Big|_{x=1, y=2}^{x=1, y=2}$$
 given that $\frac{dx}{dt}\Big|_{x=2, y=2}^{x=1, y=2} = 6$. For convenience, first rewrite the equation as $xy^3 = \frac{8}{5} + \frac{8}{5}y^2$ then $3xy^2\frac{dy}{dt} + y^3\frac{dx}{dt} = \frac{16}{5}y\frac{dy}{dt}, \frac{dy}{dt} = \frac{y^3}{\frac{16}{5}y - 3xy^2}\frac{dx}{dt}$ so $\frac{dy}{dt}\Big|_{x=1, y=2}^{x=1, y=2} = \frac{2^3}{\frac{16}{5}(2) - 3(1)2^2}(6) = -60/7$ units/s.
(b) falling, because $\frac{dy}{dt} < 0$

34. Find
$$\frac{dx}{dt}\Big|_{(2,5)}$$
 given that $\frac{dy}{dt}\Big|_{(2,5)} = 2$. Square and rearrange to get $x^3 = y^2 - 17$
so $3x^2\frac{dx}{dt} = 2y\frac{dy}{dt}, \frac{dx}{dt} = \frac{2y}{3x^2}\frac{dy}{dt}, \frac{dx}{dt}\Big|_{(2,5)} = \left(\frac{5}{6}\right)(2) = \frac{5}{3}$ units/s.

35. The coordinates of *P* are
$$(x, 2x)$$
, so the distance between *P* and the point $(3, 0)$ is
 $D = \sqrt{(x-3)^2 + (2x-0)^2} = \sqrt{5x^2 - 6x + 9}$. Find $\frac{dD}{dt}\Big|_{x=3}$ given that $\frac{dx}{dt}\Big|_{x=3} = -2$
 $\frac{dD}{dt} = \frac{5x-3}{\sqrt{5x^2 - 6x + 9}} \frac{dx}{dt}$, so $\frac{dD}{dt}\Big|_{x=3} = \frac{12}{\sqrt{36}}(-2) = -4$ units/s.

36. (a) Let *D* be the distance between *P* and (2,0). Find $\frac{dD}{dt}\Big|_{x=3}$ given that $\frac{dx}{dt}\Big|_{x=3} = 4$. $D = \sqrt{(x-2)^2 + y^2} = \sqrt{(x-2)^2 + x} = \sqrt{x^2 - 3x + 4}$ so $\frac{dD}{dt} = \frac{2x - 3}{2\sqrt{x^2 - 3x + 4}}$; $\frac{dD}{dt}\Big|_{x=3} = \frac{3}{2\sqrt{4}} = \frac{3}{4}$ units/s.

(b) Let
$$\theta$$
 be the angle of inclination. Find $\frac{d\theta}{dt}\Big|_{x=3}$ given that $\frac{dx}{dt}\Big|_{x=3} = 4$.
 $\tan \theta = \frac{y}{x-2} = \frac{\sqrt{x}}{x-2}$ so $\sec^2 \theta \frac{d\theta}{dt} = -\frac{x+2}{2\sqrt{x}(x-2)^2} \frac{dx}{dt}$, $\frac{d\theta}{dt} = -\cos^2 \theta \frac{x+2}{2\sqrt{x}(x-2)^2} \frac{dx}{dt}$.
When $x = 3$, $D = 2$ so $\cos \theta = \frac{1}{2}$ and $\frac{d\theta}{dt}\Big|_{x=3} = -\frac{1}{4} \frac{5}{2\sqrt{3}} (4) = -\frac{5}{2\sqrt{3}}$ rad/s.

37. Solve $\frac{dy}{dt} = 3\frac{dx}{dt}$ given $y = x \ln x$. Then $\frac{dy}{dt} = \frac{dy}{dx}\frac{dx}{dt} = (1 + \ln x)\frac{dx}{dt}$, so $1 + \ln x = 3$, $\ln x = 2$, $x = e^2$.

38.
$$32x \frac{dx}{dt} + 18y \frac{dy}{dt} = 0$$
; if $\frac{dy}{dt} = \frac{dx}{dt} \neq 0$, then $(32x + 18y)\frac{dx}{dt} = 0$, $32x + 18y = 0$, $y = -\frac{16}{9}x$ so $16x^2 + 9\frac{256}{81}x^2 = 144$, $\frac{400}{9}x^2 = 144$, $x^2 = \frac{81}{25}$, $x = \pm \frac{9}{5}$. If $x = \frac{9}{5}$, then $y = -\frac{16}{9}\frac{9}{5} = -\frac{16}{5}$. Similarly, if $x = -\frac{9}{5}$, then $y = \frac{16}{5}$. The points are $(\frac{9}{5}, -\frac{16}{5})$ and $(-\frac{9}{5}, \frac{16}{5})$.

39. Find $\frac{dS}{dt}\Big|_{s=10}$ given that $\frac{ds}{dt}\Big|_{s=10} = -2$. From $\frac{1}{s} + \frac{1}{S} = \frac{1}{6}$ we get $-\frac{1}{s^2}\frac{ds}{dt} - \frac{1}{S^2}\frac{dS}{dt} = 0$, so $\frac{dS}{dt} = -\frac{S^2}{s^2}\frac{ds}{dt}$. If s = 10, then $\frac{1}{10} + \frac{1}{S} = \frac{1}{6}$ which gives S = 15. So $\frac{dS}{dt}\Big|_{s=10} = -\frac{225}{100}(-2) = 4.5$ cm/s. The image is moving away from the lens.

Exercise Set 2.1

40. Suppose that the reservoir has height H and that the radius at the top is R. At any instant of time let h and r be the corresponding dimensions of the cone of water (see figure). We want to show that $\frac{dh}{dt}$ is constant and independent of H and R, given that $\frac{dV}{dt} = -kA$ where V is the volume of water, A is the area of a circle of radius r, and k is a positive constant. The volume of a cone of radius r and height h is $V = \frac{1}{3}\pi r^2 h$. By similar triangles $\frac{r}{h} = \frac{R}{H}$, $r = \frac{R}{H}h$ thus $V = \frac{1}{3}\pi \left(\frac{R}{H}\right)^2 h^3$ so

(1)

$$\frac{dV}{dt} = \pi \left(\frac{R}{H}\right)^2 h^2 \frac{dh}{dt} \tag{6}$$

But it is given that $\frac{dV}{dt} = -kA$ or, because $A = \pi r^2 = \pi \left(\frac{R}{H}\right)^2 h^2$, $\frac{dV}{dt} = -k\pi \left(\frac{R}{H}\right)^2 h^2$, which when substituted into equation (1) gives $-k\pi \left(\frac{R}{H}\right)^2 h^2 = \pi \left(\frac{R}{H}\right)^2 h^2 \frac{dh}{dt}, \frac{dh}{dt} = -k.$

41. Let *r* be the radius, *V* the volume, and *A* the surface area of a sphere. Show that $\frac{dr}{dt}$ is a constant given that $\frac{dV}{dt} = -kA$, where *k* is a positive constant. Because $V = \frac{4}{3}\pi r^3$, $\frac{dV}{dt} = 4\pi r^2 \frac{dr}{dt}$ (1)

But it is given that $\frac{dV}{dt} = -kA$ or, because $A = 4\pi r^2$, $\frac{dV}{dt} = -4\pi r^2 k$ which when substituted into equation (1) gives $-4\pi r^2 k = 4\pi r^2 \frac{dr}{dt}$, $\frac{dr}{dt} = -k$.

42. Let x be the distance between the tips of the minute and hour hands, and α and β the angles shown in the figure. Because the minute hand makes one revolution in 60 minutes, $\frac{d\alpha}{dt} = \frac{2\pi}{60} = \pi/30 \text{ rad/min}; \text{ the hour hand makes one revolution in 12 hours (720 minutes), thus}$ $\frac{d\beta}{dt} = \frac{2\pi}{720} = \pi/360 \text{ rad/min}. \text{ We want to find } \frac{dx}{dt} \Big|_{\alpha=2\pi, \beta=3\pi/2} \text{ given that } \frac{d\alpha}{dt} = \pi/30 \text{ and } \frac{d\beta}{dt} = \pi/360.$ Using the law of cosines on the triangle shown in the figure, $x^2 = 3^2 + 4^2 - 2(3)(4)\cos(\alpha - \beta) = 25 - 24\cos(\alpha - \beta), \text{ so}$ $2x\frac{dx}{dt} = 0 + 24\sin(\alpha - \beta)\left(\frac{d\alpha}{dt} - \frac{d\beta}{dt}\right),$

$$\frac{dt}{dt} = \frac{12}{x} \left(\frac{d\alpha}{dt} - \frac{d\beta}{dt} \right) \sin(\alpha - \beta).$$
 When $\alpha = 2\pi$ and $\beta = 3\pi/2$,
 $x^2 = 25 - 24\cos(2\pi - 3\pi/2) = 25, x = 5;$ so
 $\frac{dx}{dt} \Big|_{\substack{\alpha = 2\pi, \\ \beta = 3\pi/2}} = \frac{12}{5} (\pi/30 - \pi/360) \sin(2\pi - 3\pi/2) = \frac{11\pi}{150}$ in/min.

43. Extend sides of cup to complete the cone and let V_0 be the volume of the portion added, then (see figure) $V = \frac{1}{3}\pi r^2 h - V_0$ where $\frac{r}{h} = \frac{4}{12} = \frac{1}{3}$ so $r = \frac{1}{3}h$ and $V = \frac{1}{3}\pi \left(\frac{h}{3}\right)^2 h - V_0 = \frac{1}{27}\pi h^3 - V_0$, $\frac{dV}{dt} = \frac{1}{9}\pi h^2 \frac{dh}{dt}, \frac{dh}{dt} = \frac{9}{\pi h^2} \frac{dV}{dt}$,

 $\frac{dh}{dt}\Big|_{h=0} = \frac{9}{\pi(9)^2}(20) = \frac{20}{9\pi} \text{ cm/s.}$

